Tensor network subspace identification of polynomial state space models
نویسندگان
چکیده
This article introduces a tensor network subspace algorithm for the identification of specific polynomial state space models. The polynomial nonlinearity in the state space model is completely written in terms of a tensor network, thus avoiding the curse of dimensionality. We also prove how the block Hankel data matrices in the subspace method can be exactly represented by low rank tensor networks, reducing the computational and storage complexity significantly. The performance and accuracy of our subspace identification algorithm are illustrated by numerical experiments, showing that our tensor network implementation is around 20 times faster than the standard matrix implementation before the latter fails due to insufficient memory, is robust with respect to noise and can model real-world systems.
منابع مشابه
Nonlinear System Identification Using Hammerstein-Wiener Neural Network and subspace algorithms
Neural networks are applicable in identification systems from input-output data. In this report, we analyze theHammerstein-Wiener models and identify them. TheHammerstein-Wiener systems are the simplest type of block orientednonlinear systems where the linear dynamic block issandwiched in between two static nonlinear blocks, whichappear in many engineering applications; the aim of nonlinearsyst...
متن کاملOn the character space of vector-valued Lipschitz algebras
We show that the character space of the vector-valued Lipschitz algebra $Lip^{alpha}(X, E)$ of order $alpha$ is homeomorphic to the cartesian product $Xtimes M_E$ in the product topology, where $X$ is a compact metric space and $E$ is a unital commutative Banach algebra. We also characterize the form of each character on $Lip^{alpha}(X, E)$. By appealing to the injective tensor product, we the...
متن کاملA New High-order Takagi-Sugeno Fuzzy Model Based on Deformed Linear Models
Amongst possible choices for identifying complicated processes for prediction, simulation, and approximation applications, high-order Takagi-Sugeno (TS) fuzzy models are fitting tools. Although they can construct models with rather high complexity, they are not as interpretable as first-order TS fuzzy models. In this paper, we first propose to use Deformed Linear Models (DLMs) in consequence pa...
متن کاملSubspace system identification of support-excited structures—part I: theory and black-box system identification
This paper reviews the theoretical principles of subspace system identification as applied to the problem of estimating black-box state-space models of support-excited structures (e.g., structures exposed to earthquakes). The work distinguishes itself from past studies by providing readers with a powerful geometric interpretation of subspace operations that relates directly to theoretical struc...
متن کاملSubspace method for continuous-time fractional system identification
Abstract: The aim of this paper is to develop a subspace method for state-space identification of continuous-time systems using fractional commensurate models. As compared to the classical state-space representation, the commensurate differentiation order must be estimated besides the state-space matrices. The latter are estimated with conventional subspace-based techniques using QR and singula...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1709.08773 شماره
صفحات -
تاریخ انتشار 2017